Single Crystalline Cadmium Sulfide Nanowires with Branched Structure

نویسندگان

  • Feng Gao
  • Qingyi Lu
چکیده

In this article, we report the synthesis of branched single crystal CdS nanowires. This branched CdS nanostructure is prepared by a simple surfactant-directing method, which is of particular interest as it uses readily available reagents and provides a convenient route to high-yield single crystal nanowires but with branched shape. These branched nanowires have an average diameter of about 40 nm and length up to several micrometers. A possible mechanism has been proposed and the addition of surfactant dodecylthiol into the two mixed-solvents would play an importance effect on the structure of the product. Based on the mechanism, by controlling the synthesis conditions, such as the ratios between the surfactant, inorganic solvent, and organic solvent, other kinds of nanostructures based on CdS nanowires were also prepared. Photoluminescence (PL) measurement reveals that the branched CdS nanowires have a strong emission at about 700 nm which might be due to its special structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of CdS and ZnS nanowires using single-source molecular precursors.

Single-source molecular precursors were used to synthesize II-VI compound semiconductor nanowires for the first time. Cadmium sulfide and zinc sulfide nanowires were prepared using cadmium diethyldithiocarbamate, Cd(S2CNEt2)2, and zinc diethyldithiocarbamate, Zn(S2CNEt2)2, respectively, as precursors in a gold nanocluster-catalyzed vapor-liquid-solid growth process. High-resolution transmission...

متن کامل

Growth of epitaxial silicon nanowires on a Si substrate by a metal-catalyst-free process

The growth of epitaxial Si nanowires by a metal-catalyst-free process has been investigated as an alternative to the more common metal-catalyzed vapor-liquid-solid process. The well-aligned Si nanowires are successfully grown on a (111)-oriented Si substrate without any metal catalysts by a thermal treatment using silicon sulfide as a Si source at approximately 1200 °C. The needle-shaped Si nan...

متن کامل

In situ growth, structure characterization, and enhanced photocatalysis of high-quality, single-crystalline ZnTe/ZnO branched nanoheterostructures.

Single-crystalline, high-quality branched ZnTe-core/ZnO-branch nanoheterostructures were synthesized by an in situ strategy in an environmental scanning electron microscope. Composition and structure characterization confirmed that ZnO nanowires were perfectly epitaxially grown on ZnTe nanowires as branches. Noticeably, growth temperature plays a crucial role in determining the density and diam...

متن کامل

Lasing in single cadmium sulfide nanowire optical cavities.

The mechanism of lasing in single cadmium sulfide (CdS) nanowire cavities was elucidated by temperature-dependent and time-resolved photoluminescence (PL) measurements. Temperature-dependent PL studies reveal rich spectral features and show that an exciton-exciton interaction is critical to lasing up to 75 K, while an exciton-phonon process dominates at higher temperatures. These measurements t...

متن کامل

Selective synthesis of single-crystalline selenium nanobelts and nanowires in micellar solutions of nonionic surfactants.

Single-crystalline nanobelts and nanowires of trigonal selenium (t-Se) have been selectively synthesized in micellar solutions of nonionic surfactants. In particular, t-Se nanobelts about 30 nm in thickness were obtained in micellar solutions of poly(oxyethylene(20)) octadecyl ether (C18EO20), whereas t-Se nanowires were obtained in micellar solutions of poly(oxyethylene(10)) dodecyl ether (C12...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009